Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(1H-Pyrazol-3-yl)pyridine-terephthalic acid-water (2/1/2)

Zheng-De Tan, ${ }^{\mathbf{a} *}$ Feng-Jiao Tan, ${ }^{\mathbf{b}}$ Bo Tan ${ }^{\mathbf{b}}$ and Cheng-Ming Zhang ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiang Tan 411104, People's Republic of China, and ${ }^{\text {b }}$ The People's Hospital of Xiangtan County, Xiang Tan 411104, People's Republic of China
Correspondence e-mail: tzd0517@163.com
Received 8 March 2012; accepted 13 May 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.064 ; w R$ factor $=0.128$; data-to-parameter ratio $=11.8$.

In the title compound, $2 \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \cdot \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the pyridine and pyrazole rings are approximately coplanar, the dihedral angle between them being $4.69(9)^{\circ}$. The asymmetric unit consists of half of the terephthalic acid (an inversion centre generates the other half of the molecule), one 4-(1H-pyrazol3 -yl)pyridine (4pp) molecule and one water molecule. In the crystal, two 4 pp and one terephthalic acid molecules form a linear three-molecule unit as a result of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. These units are further assembled into a threedimensional network by two types of hydrogen bonds, viz. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$.

Related literature

For the synthesis of 4-(1H-pyrazol-3-yl)-pyridine, see: Davies et al. (2003).

Experimental

Crystal data
$2 \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \cdot \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=492.49$
$\gamma=78.10(3)^{\circ}$
Triclinic, $P \overline{1}$
$a=6.8364$ (14) \AA
$b=9.5308(19) \AA$
$V=574.9(2) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$c=10.131(2) \AA \quad T=293 \mathrm{~K}$
$\alpha=67.52(3)^{\circ}$
$0.32 \times 0.25 \times 0.18 \mathrm{~mm}$
$\beta=71.22$ (3) ${ }^{\circ}$

5041 measured reflections 2024 independent reflections 1254 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.054$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
H atoms treated by a mixture of independent and constrained
$w R\left(F^{2}\right)=0.128$
$S=1.21$
2024 reflections
172 parameters
4 restraints
refinement
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 W^{\text {i }}$	0.86	1.98	$2.829(3)$	170
O1 $W-\mathrm{H} 1 W \cdots \mathrm{O}^{\text {ii }}$	$0.84(1)$	$1.99(1)$	$2.811(3)$	$167(2)$
O1 $W-\mathrm{H} 2 W \cdots 1^{\text {iii }}$	$0.84(1)$	$2.06(1)$	$2.864(3)$	$161(2)$
O1-H11 $\cdots \mathrm{N} 3$	$0.82(1)$	$1.80(1)$	$2.614(3)$	$170(3)$
Symmetry codes: (i) $x+1, y, z$; (ii) $x, y+1, z ;$ (iii) $-x+1,-y+1,-z$.				

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: SHELXL97.

The authors acknowledge Hunan Provincial Department of Education for the Xiang Norimichi Foundation (2010 243).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2153).

References

Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Davies, G. M., Jeffery, J. C. \& Ward, M. D. (2003). New J. Chem. 27, 1550-1553. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o1942 [doi:10.1107/S1600536812021599]

4-(1H-Pyrazol-3-yl)pyridine-terephthalic acid-water (2/1/2)

Zheng-De Tan, Feng-Jiao Tan, Bo Tan and Cheng-Ming Zhang

Comment

In the title compound, the pyridine ring and the pyrazole ring are approximately coplanar with the dihedral angles between them being $4.69(9)^{\circ}$. Two 4pp and one terephthalic acid form a linear three-molecule unit as a result of O$\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 2 and Table 1), which the N atom is from the ring of pyridine. There is a hydrogen interaction between N1 from pyrazol as the hydrogen bond donor and O1w as the hydrogen bond acceptor.At the same time, O1w as the hydrogen bond donor interacts with two O 2 atoms from different terephthalic acid (Fig.3). These supermolecules are assembled into a three-dimensional network by two types of hydrogen bonding including $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$.

Experimental

4-(1H-pyrazol-3-yl)-pyridine was prepared according to the published method of Davies et al. (2003). An aqueous solution (20 mL) containing terephthalic acid ($0.1 \mathrm{mmol}, 16 \mathrm{mg}$), $\mathrm{NaOH}(0.2 \mathrm{mmol}, 8 \mathrm{mg})$ and 4-(1 H -pyrazol-3-yl)pyridine ($0.2 \mathrm{mmol}, 29 \mathrm{mg}$) was stirred for 20 minutes in air, and left to stand at room temperature for about four weeks, then the colorless crystals were obtained.

Refinement

C - and N - bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$. The water H-atoms were located in a difference map, and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.84 \AA$; their $U_{\text {iso }}$ values were refined.

Computing details

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1

The structure of the title compound, with 30% probability displacement ellipsoids [Symmetry codes: $i=-x,-y,-z$].

Figure 2
A view of the supermolecule unit of the title compound. Hydrogen bonds are shown as dashed lines.

Figure 3

Three types hydrogen bonds in the stucture. Hydrogen bonds are shown as dashed lines.

4-(1 H-Pyrazol-3-yl)pyridine-terephthalic acid-water (2/1/2)

Crystal data

$2 \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \cdot \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=492.49$
Triclinic, $P 1$
Hall symbol: -P 1
$a=6.8364$ (14) \AA
$b=9.5308(19) \AA$
$c=10.131$ (2) \AA
$\alpha=67.52(3)^{\circ}$
$\beta=71.22(3)^{\circ}$
$\gamma=78.10(3)^{\circ}$
$V=574.9(2) \AA^{3}$

Data collection

Rigaku SCXmini
diffractometer
Radiation source: sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.967, T_{\text {max }}=0.981$
$Z=1$
$F(000)=258$
$D_{\mathrm{x}}=1.423 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4645 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.32 \times 0.25 \times 0.18 \mathrm{~mm}$

5041 measured reflections
2024 independent reflections
1254 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-8 \rightarrow 8$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.128$
$S=1.21$
2024 reflections
172 parameters
4 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0423 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hat{A}^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
C1	$1.0188(4)$	$0.3344(3)$	$0.3605(3)$	$0.0315(7)$
H1W	$0.422(4)$	$0.7787(14)$	$0.275(3)$	0.047^{*}
N1	$1.2378(3)$	$0.4525(3)$	$0.3732(3)$	$0.0425(7)$
H1	1.3209	0.5197	0.3507	0.051^{*}
O1	$0.3502(3)$	$0.2110(2)$	$0.0458(2)$	$0.0473(6)$
O1W	$0.4882(3)$	$0.6952(2)$	$0.2700(2)$	$0.0513(6)$
C2	$1.0696(4)$	$0.2524(3)$	$0.4943(3)$	$0.0420(8)$
H2	1.0189	0.1622	0.5651	0.050^{*}
H2W	$0.553(4)$	$0.702(3)$	$0.1821(10)$	0.063^{*}
N2	$1.1240(4)$	$0.4575(3)$	$0.2854(2)$	$0.0400(7)$
O2	$0.3105(3)$	$-0.0044(2)$	$0.2397(2)$	$0.0475(6)$
C3	$1.2093(5)$	$0.3327(4)$	$0.4991(3)$	$0.0444(8)$
H3	1.2723	0.3089	0.5749	0.053^{*}
N3	$0.6010(3)$	$0.2457(3)$	$0.1765(3)$	$0.0396(6)$
C4	$0.6356(4)$	$0.1461(3)$	$0.3035(3)$	$0.0449(8)$
H4	0.5675	0.0577	0.3498	0.054^{*}
C5	$0.7685(4)$	$0.1702(3)$	$0.3678(3)$	$0.0418(8)$
H5	0.7896	0.0987	0.4563	0.050^{*}
C6	$0.8716(4)$	$0.3018(3)$	$0.3005(3)$	$0.0311(7)$
C7	$0.8296(4)$	$0.4054(3)$	$0.1688(3)$	$0.0421(8)$
H7	0.8919	0.4962	0.1210	0.050^{*}
C8	$0.6973(4)$	$0.3730(3)$	$0.1105(3)$	$0.0451(8)$
H8	0.6734	0.4420	0.0218	0.054^{*}
C9	$0.1342(4)$	$0.0404(3)$	$0.0568(3)$	$0.0303(7)$
C10	$0.0548(4)$	$0.1468(3)$	$-0.0570(3)$	$0.0362(7)$

H10	0.0913	0.2463	-0.0964	0.043^{*}
C11	$0.2749(4)$	$0.0835(3)$	$0.1202(3)$	$0.0365(7)$
H11	$0.427(3)$	$0.212(3)$	$0.093(2)$	0.044^{*}
C12	$0.0774(4)$	$-0.1067(3)$	$0.1123(3)$	$0.0368(7)$
H12	0.1291	-0.1799	0.1882	0.044^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0348(17)$	$0.0340(17)$	$0.0324(17)$	$-0.0076(14)$	$-0.0138(14)$	$-0.0124(15)$
N1	$0.0410(16)$	$0.0508(17)$	$0.0497(17)$	$-0.0133(12)$	$-0.0191(13)$	$-0.0218(15)$
O1	$0.0540(14)$	$0.0522(14)$	$0.0513(14)$	$-0.0250(11)$	$-0.0301(11)$	$-0.0111(12)$
O1W	$0.0522(16)$	$0.0496(14)$	$0.0540(14)$	$-0.0137(11)$	$-0.0216(12)$	$-0.0092(12)$
C2	$0.0446(19)$	$0.0435(19)$	$0.0449(19)$	$-0.0102(15)$	$-0.0174(16)$	$-0.0152(16)$
N2	$0.0418(15)$	$0.0459(16)$	$0.0419(15)$	$-0.0168(12)$	$-0.0179(12)$	$-0.0134(13)$
O2	$0.0631(15)$	$0.0476(14)$	$0.0426(13)$	$-0.0174(11)$	$-0.0317(12)$	$-0.0065(12)$
C3	$0.050(2)$	$0.050(2)$	$0.043(2)$	$-0.0045(16)$	$-0.0243(16)$	$-0.0161(18)$
N3	$0.0368(15)$	$0.0468(16)$	$0.0402(16)$	$-0.0107(12)$	$-0.0117(12)$	$-0.0156(14)$
C4	$0.045(2)$	$0.049(2)$	$0.048(2)$	$-0.0232(16)$	$-0.0101(16)$	$-0.0169(18)$
C5	$0.0507(19)$	$0.0396(18)$	$0.0389(18)$	$-0.0182(15)$	$-0.0195(15)$	$-0.0043(15)$
C6	$0.0322(17)$	$0.0341(17)$	$0.0327(17)$	$-0.0028(14)$	$-0.0119(14)$	$-0.0149(15)$
C7	$0.0468(19)$	$0.0375(18)$	$0.048(2)$	$-0.0141(14)$	$-0.0211(16)$	$-0.0090(16)$
C8	$0.049(2)$	$0.048(2)$	$0.0427(19)$	$-0.0108(17)$	$-0.0227(16)$	$-0.0090(17)$
C9	$0.0263(16)$	$0.0353(18)$	$0.0329(16)$	$-0.0078(13)$	$-0.0074(13)$	$-0.0134(15)$
C10	$0.0382(18)$	$0.0311(16)$	$0.0435(18)$	$-0.0124(14)$	$-0.0149(15)$	$-0.0094(15)$
C11	$0.0349(17)$	$0.0402(19)$	$0.0439(19)$	$-0.0119(15)$	$-0.0123(15)$	$-0.0190(17)$
C12	$0.0381(18)$	$0.0401(18)$	$0.0364(17)$	$-0.0093(14)$	$-0.0177(14)$	$-0.0081(15)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{N} 2$	1.336 (3)	C4-C5	1.373 (4)
C1-C2	1.397 (4)	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
C1-C6	1.465 (3)	C5-C6	1.391 (3)
N1-C3	1.337 (3)	C5-H5	0.9300
N1-N2	1.340 (3)	C6-C7	1.400 (4)
N1-H1	0.8600	C7-C8	1.364 (4)
O1-C11	1.272 (3)	C7-H7	0.9300
$\mathrm{O} 1-\mathrm{H} 11$	0.8202 (11)	C8-H8	0.9300
O1W-H1W	0.8400 (11)	C9-C12	1.383 (3)
O1W-H2W	0.8400 (11)	C9-C10	1.391 (4)
C2-C3	1.364 (4)	C9-C11	1.506 (4)
C 2 - H 2	0.9300	C10-C12 ${ }^{\text {i }}$	1.382 (4)
$\mathrm{O} 2-\mathrm{C} 11$	1.247 (3)	C10-H10	0.9300
C3-H3	0.9300	C12-C10 ${ }^{\text {i }}$	1.382 (4)
N3-C8	1.333 (3)	C12-H12	0.9300
N3-C4	1.335 (4)		
N2- $\mathrm{C} 1-\mathrm{C} 2$	110.9 (2)	C5-C6-C7	116.8 (3)
N2-C1-C6	120.5 (2)	C5-C6-C1	123.3 (2)
C2-C1-C6	128.6 (3)	C7-C6-C1	120.0 (2)

supplementary materials

$\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2$	$113.3(2)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$	123.3
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{H} 1$	123.3
$\mathrm{C} 11-\mathrm{O} 1-\mathrm{H} 11$	$102.3(19)$
$\mathrm{H} 1 \mathrm{~W}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$	$111.1(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$105.4(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	127.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	127.3
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	$104.1(2)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$106.3(3)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3$	126.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	126.8
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 4$	$119.1(2)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.0(3)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{H} 4$	119.0
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.0
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.0(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.0
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.0

$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.0(3)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.0
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.0
$\mathrm{~N} 3-\mathrm{C} 8-\mathrm{C} 7$	$122.2(3)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{H} 8$	118.9
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	118.9
$\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 10$	$118.0(2)$
$\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 11$	$120.6(3)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 11$	$121.4(2)$
$\mathrm{C} 12-\mathrm{C} 10-\mathrm{C} 9$	$120.9(3)$
$\mathrm{C} 12 \mathrm{C}^{\mathrm{i}} \mathrm{C} 10-\mathrm{H} 10$	119.5
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	119.5
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{O} 1$	$124.0(3)$
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 9$	$119.7(3)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 9$	$116.3(3)$
$\mathrm{C} 9-\mathrm{C} 12-\mathrm{C} 100^{\mathrm{i}}$	$121.1(3)$
$\mathrm{C} 9-\mathrm{C} 12-\mathrm{H} 12$	119.4
$\mathrm{C} 10-\mathrm{C} 12-\mathrm{H} 12$	119.4

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.86	1.98	$2.829(3)$	170
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 2^{\text {iii }}$	$0.84(1)$	$1.99(1)$	$2.811(3)$	$167(2)$
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots \mathrm{O}^{\text {iv }}$	$0.84(1)$	$2.06(1)$	$2.864(3)$	$161(2)$
$\mathrm{O} 1 — \mathrm{H} 11 \cdots \mathrm{~N} 3$	$0.82(1)$	$1.80(1)$	$2.614(3)$	$170(3)$

Symmetry codes: (ii) $x+1, y, z$; (iii) $x, y+1, z$; (iv) $-x+1,-y+1,-z$.

